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Visual Number Theory
Introduction

From the website www.lclark.edu: “The mission of Lewis & Clark is to know the tradi-
tions of the liberal arts, to test their boundaries through ongoing exploration, and to
hand on to successive generations the tools and discoveries of this quest.”

What are the liberal arts? Here’s a quote from the Encyclo-
peedia Britannica: a “college or university curriculum aimed
at imparting general knowledge and developing general in-
tellectual capacities in contrast to a professional, vocational,
or technical curriculum. In the medieval European univer-
sity the seven liberal arts were grammar, rhetoric, and logic
(the trivium) and geometry, arithmetic, music, and astron-
omy (the quadrivium).” At the right is an engraving from
1180 entitled “Philosophy reigning over the seven liberal
arts.”

bJ

One of the seven seems out of place—arithmetic. But until the 20th century, “arithmetic’
referred to the branch of mathematics we now call number theory, the branch of mathe-
matics devoted to the study of the integers.
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Visual Number Theory

While preparing this talk, I looked through several elementary number theory texts (in the
context of number theory, “elementary’”” means no use of complex analysis), I was struck
by how few illustrations most of them have.

A number can represent many things—the cardinality of a set, the length of a line seg-
ment, the area of a region, the volume of a solid, etc. The texts should have more pic-
tures.

In this talk I’1l present some of my favorite pictures for use in studying number theory,
what I call visual gems of number theory.

A brief outline:
1. Figurate numbers
. Patterns among polygonal numbers
. Triangular numbers and binomial coefficients
. Congruence
. Pythagorean triples
. The carpets theorem

. Rational and irrational numbers

0 I O Wn B~ LN

. Perfect numbers
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Visual Number Theory

Figurate Numbers

The figurate numbers are positive integers that can be represented by geometric patterns
(thus the words squares and cubes for certain numbers). The study of figurate numbers
dates back to the time of Pythagoras and his colleagues.

Special cases include the polygonal numbers, which can be represented by sets of points
in the plane. Here are some examples:

Triangular numbers Square numbers Pentagonal numbers Hexagonal numbers
t :1,3,6,10,15,. s, :1,4,9,16,25,. p, 1,5,12,22,. :1,6,15,28,.

To compute ¢, or p,,, would be tedious—are there formulas for these numbers?

MathPath at Lewis & Clark College July 1-July 29, 2018



Visual Number Theory

Let’s examine the data and look for patterns: The entries kl3 4 5 6 7 38

in the table are the nth A-gonal numbers for 3< k <8 and 1 1 1 1 1

1
1<n<6: 3 4 5 6 7T 8
6 9 12 15 18 21
10 16 22 28 34 40
15 25 35 45 55 65
21 36 51 66 81 96

AN DL~ S

The data appear to be (1) linear in £ (constant differences)
and (2) quadratic in n (the differences increase linearly).

: 1
Hypothesis: n+ 5 n(n—1)(k-2).

Proof: Induction? on n? on £?

Proofs really aren’t there to convince you that
something 1s true—they’re there to show you

why it is true.
—Andrew Gleason

A good proof 1s one that makes us wiser.
—Yu. [. Manin

Let’s exploit the geometry to find an expression for the nth k-gonal number:
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Here is the nth k~gonal number (really the 6th octagonal number, 96):
To evaluate, we “triangulate:” Thus the nth k-gonal number is n+(k—2)¢, . And ¢, is

2t =n(n+1)

n(n— 1)

easy to compute:

Hence the nth k-gonal number is n+ (k—2) >1, k=3).
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Relationships among the polygonal numbers

There are many lovely relationships among these numbers. Consider first the triangular

and square numbers:

n 1 2 3 4 S5 6 T 8

9

10

n~ 1 4 9 16 25 36 49 64
t 13 6 10 15 21 28

Observe that 3 + 6 =9, 15 + 21 = 36,

tn—l +tn =n

- 2,2 _ 2 2 _ 3
Exercise: Show that ¢, +¢ | = tnz and ¢ —t _ =n".
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Now consider the triangular numbers and odd squares:

n |1 2 3 4 5 6 7 &8 9 10
(2n+1)2 9 25 49 81 121 169 225 289 361 441
t I3 o6 10 15 21 28 36 45 55

n

Observe that 9 = 10— 1; 25 =28 — 3; 49 = 55 — 6, and so on. The pattern?

2n+t1)2= 15, 1~ 1,

X

XX
000
0000
0000
0000
0000
0000

<+“—3pt]l———»

XXX OO0 00®
XXX X OO

<+ >




Visual Number Theory

Now consider the triangular and pentagonal numbers:

n |1 2 3 4 5 6 7 8 9 10

(1L 3 6 15 21 28 36 55

p, 1 5 12 22 51 70 92 115 145
Observe that 12 =15 —-3; 22 =28 — 6; and . The pattern?

@pn Pn=1Tlwy-1—11
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Here’s another:

n |1 2 3 4 5 6 7 &8 9 10
¢, 13 6 10 15 21 28 45 55
p, | 1 5 22 35 51 70 92 115 145

Exercise: 14+5+12+---+p =n-t .
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Now consider the triangular and hexagonal numbers:

n 1 2 3 4 S5 6 7 8 9 10
3 6 10 15 21 36 55

h 1 6 15 66 91 120 153 190

Is every hexagonal number a triangular number?

Yes—in fact, we have n, =¢, |, =n(2n-1):

[The middle picture also shows that ¢, _ =¢ +3t .]
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Octagonal numbers and squares:

n 1 2 3 4 5 6 7 8 9

s 1 4 9 25 36 49 64

o 1 8 21 40 96 133 176 225
Here we have: 21 =25 —-4;40=49 - 9; and . The pattern:

o =(2n—1)"—(n-1)*

Exercise: 1+8+21+---+0, =(2n—1)t,.
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The triangular numbers appear in Pascal’s triangle: |
n+1 1 1
tn=1+2+3+---+n=( ) ) 1 2 1
1 3 3 1
Why are triangular numbers binomial coefficients? 1 4 6 4 1
1 5 1010 5 1
n(n+1) 16 152015 6 1

One answer: each equals S

A better answer:

There exists a one-to-one correspondence between a set of 7, =1 +2 + --- + n elements

and the set of two-element subsets of a set with n + 1 elements.

X JOX X X JOX X X Roj
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Congruence
A central concept in number theory is the notion of congruence: we say that
a is congruent to b modulo m [a = b (mod m)] if and only if m divides a — b, m > 0.

Examples: 20 =6 (mod 7), 19 =-3 (mod 11), etc. An exercise in nearly every number
theory text: Consider the odd squares: {1,9,25,49,81,...}. Each is one more than a multi-
ple of 8, so: Prove: If n is odd, then n® = 1(mod8).

2k+1)* =8¢, +1

A consequence: There are infinitely many square triangular numbers.

8¢, (8, +1)
8, —

2

t, =17 and ¢ =41, (2k +1)7,
so if 7, 1is square, SO 1S - Examples: 7, = 62, theg = 2042, etc.

But not all square ¢, s are generated this way: ¢, = 352, Hesl = 11892, etc.
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For students of number theory: Finding all the square triangular numbers requires solving
n(n+1)

the equation = y2 for positive integers n and y [a diophantine equation, named

for Diophantus of Alexandria (3rd century CE)]. This particular one is equivalent to
x2-8 y2 =1 for x=2n+1, an example of a so-called Pell’s equation. This equation has

infinitely many solutions in positive integers, and in your number theory course you will
learn how to find them all.

While reading his copy of Diophantus’ book Arithmetica, Pierre de Fermat (1601-1665)

wrote that had shown that the diophantine equation a” + 5" = ¢" has no solutions in inte-
gers for n=3 (the Last Theorem, proved by Andrew Wiles in 1995). But what about

a® +b* =c?

2

Solutions to a” +b* = ¢? in positive integers are called Pythagorean triples, thanks to the

Pythagorean theorem from plane geometry. Let’s examine them.
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Pythagorean triples: Solutions to a’+b*=c*in positive integers. Familiar examples are

(a,b,c)=(3,4,5), (5,12,13), (8,15,17), etc. In fact, there are infinitely many:

Ifaisodd, sois a® =2b+1,and a” +b” = (b+1)*: 000 © .2 b
00000 ,
00000 O/
00000

But this doesn’t generate all the triples. Euclid’s formula does: If (a,b,c) is a Pythago-

rean triple (with a even), then there exist positive integers m and n with m > n such that

v
(\;& a=2mn
o h— — &/ am .
m mn b—m —I’l
|" mi c=m*+n’
m?2 n? |

m2—n2 2 n2
«—m2+n2——»>

Euclid also showed that the formula generates a primitive triple (a, b, c have no common
factor) when m # n(mod2) and (m,n)=1.
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A second characterization of Pythagorean triples:
If you can factor even squares, you can find all the Pythagorean triples, since

There is a one-to-one correspondence between Pythagorean triples (a,b,c) and factoriza-
tions of even squares of the form n* = 2pq.

The correspondence is (a,b,c) = (n+ p,n+q,n+ p+q). Here’s an example.

Consider factorizations of 6° =36:
6°=2-1-18 corresponds to (7,24,25);
6°=2-2-9 corresponds to (8,15,17); and

6°=2-3-6 corresponds to (9,12,15) [the first two are primitive, this one isn’t].

We derive this characterization with a little known theorem: 7he carpets theorem.
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The carpets theorem.

A simple but powerful result for deriving some nice results in number theory. Suppose
we have a room with two carpets that completely cover the floor, as illustrated in (a). If

we move one of them, as in (b), then the area of the overlap (in ) must equal the un-
covered area (in ). This 1s easily verified with simple algebra.
(a) (b) ©)f w
o e
Z

In (c), let x, y, z, and w denote the areas of the differently colored regions in the room.
The area of the room is x+ y+ z+ w, the combined area of the two carpetsis x+2y+z,

and x+ y+z+w=x+2y+z ifand only if y=w.

Thus we have proved: Place two carpets in a room. The area of the overlap equals the
area of the uncovered floor if and only if the combined area of the carpets equals the
area of the floor. [ The shapes of the room and the carpets are arbitrary. |

Now let’s apply this theorem to Pythagorean triples:
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The Pythagorean relation a’+b* =c? suggests placing carpets with

areas a> and b° in a room with area ¢, as shown at the right.

b

By the carpets theorem the area (a+b— 0)2 of the equals
the sum 2(c— a)(c— b) of the areas of the two : l Il

Now set n=a+b—c, p=c—>b, and g =c—a. Since n, p, and g are positive integers and

a’ +b* =c* ifand only if n® =2 pq, we have the characterization several slides back:

There is a one-to-one correspondence between Pythagorean triples (a,b,c) and factoriza-
tions of even squares of the form n> =2pq.[a=n+p, b=n+q,and c=n+ p+q.]

102 =2-1-50 corresponds to (11,60,61);
10°=2.2.25 corresponds to (12,35,37); and
10°=2-5-10 corresponds to (15,20,25) [the first two are primitive, this one isn’t].

Exercise:

22 4+3% 462 =77, 50 Pythagorean quadruples exist! Are there more? How many?
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Pythagorean Runs—Pythagorean (2k+1)-tuples:
3 +4% =5
102 +112+12%2 =13 +14°
24022 4+23% +24% =252 +26% +277

A visual proof:

For 21% + 227
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isual Number Theory

Pythagorean Runs—Pythagorean (2k+1)-tuples:
3 +4% =5
102 +112+12%2 =13 +14°
24022 4+23% +24% =252 +26% +277

A visual proof:

For 21% + 227 + 23 +24% = 25% + 267 + 277, others are similar:

B S e S S S S S S A S S A A
P e e A S S

B R R R RS

PR
PR
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Rational and irrational numbers

In addition to properties of the integers, number theory studies objects constructed from
integers, such as rational numbers (ratios of integers) and irrational numbers.

The existence of irrationals is often demonstrated by showing that \/5 1s irrational.

The definition of irrational (not rational) practically demands a proof by contradiction.

Assume \/5 =m/n, where m and n are positive integers and the fraction is in lowest

terms. Then m? = 2n*, and m and n are the smallest positive integers with this property.

Now m? = n* + n* suggests using the carpets theorem.

Place the two carpets with area n’ in a room with area m> as shown at the
right. By the carpets theorem, the area of the equals the sum
of the areas of the two . But these squares also have integer
sides 2n—m and m—n smaller than m and n, respectively (since

1 <+/2 <2), a contradiction. Hence \/5 1s irrational.

A
v

Exercise: Prove that \/5 1s 1rrational.

[Hint: Place three equilateral triangular carpets in an equilateral triangular
room, as shown at the right.]
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Perfect numbers

A perfect number 1s one that is equal to the sum of its proper divisors (a divisor is proper
if it is less than the number). The proper divisors of 6 are 1, 2, and 3; and 6 =1 + 2 + 3.
The proper divisors of 28 are 1,2,4, 7, and 14;and 28 =1+2+4 + 7 + 14.

Euclid showed us how to find even perfect numbers:
If p and g = 27 — 1 are prime, then N = 2714 is perfect.
The proper divisors of N = 2p_1q are 1,2, 4,---,2P71, q,2q,4q,---, 2p_2q; their sum is V:
12 4 . op-1

g=2P -1
Leonhard Euler showed that any even perfect number must have this form.

Final exercise: Show that every even perfect number is a triangular number.

MathPath at Lewis & Clark College July 1-July 29, 2018



Visual Number Theory

THANK YOU!

Roger Nelsen
nelsen@]clark.edu
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